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ABSTRACT

A critical analysis is presented of the significance of

the energy criterion for systems that exhibit snap buckling.

The results of energetic analyses are compared to solutions of

the differential equations for the nonlinear behavior of a

clamped low arch subjected to a central concentrated load. The

differential equation analyses include consideration of transi-

tional non-symmetrical buckling modes. The snap buckling of

low arches in the presence of high temperature creep is also

considered. Experiments are described on the deformation of

such arches under static and creep conditions.

The results in this paper were obtained in the course of
research sponsored by the Office of Naval Research under
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Principal Symbols

a central height of mechanical model; also non-dimennional
amIrlituda of symmetrical deflection of arch

b non-dimensional amplitude of anti-symmetrical deflection

of arch

f width of arch cross section

k spring constant

t thickness of arch

u,w tangential and radial displacements at middle surface
of arch

v generalized displacement

A cross sectional area; also deflection amplitude

B deflection amplitude

E Youngts modulus

F force in spring component of the model

H total energy of system

H = HVP5

P applied load

Pe energy load (same as "intermediate" or "dead weight"
bucklinF load)

PL lower buckling load

PU upper buckling load

e = R/13t 2fo

L length of arms of model

R radius of arch centerline

T axial force in the arms of the model

a angular coordinate for arch (measured from centerline)

Phalf of angle subtended by arch



1.y imperfection amplitude
6 deflection or midpoint of model

- strain

1. change of curvature of arch

P2x/
d stress
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Introduction.

The fundamental cause of the large discrepancy between buck-

ling values predicted by the classical eigenvalue theory and exper-

imental results for spherical., and cylindrical shells was shown by

von Karman and Tsien, [1] [2], to be due to the existence of post

buckling stable equilibrium states characterized by loads appreci-

ably lower than the classical buckling load, e.g. 1ig. 1. They

advanced the hypothesis that somehow the shell could jump to these

equilibrium states at loads less than the linear buckling load so

that the lowest load for such states, point 2 of Fig. I, should be

considered the minimum load at which buckling was possible. The

question was left open as to how the transition from the initial

state to the buckled state was to take place since, unlike classical

buckling theory, these are not geometrically adjacent states. They

postulated, however, that the transition may be connected with

geometrical imperfections, small dynamic disturbances or possibly

with unsymmetrical deformations not included in the analyses (3].

The values von Karman and Tsien obtained for the lower buckling

loads in [1] and (2] were in surprisingly good agreement with avail-

able experimental results.

A weakness in the lower buckling load as a realistic buckling

criterion was pointed out by Friedrichs (4]. He showed that at the

lower buckling load the system of the shell and the loading is at

a higher energy level in the buckled than in the unbuckled state,

Since no energy is transferred to the system during the jump, but

some may be lost, it can only be expected to jump from a state of

a higher to a state of lower energy level. If no energy is lost
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the minimum load at which a jump can take place is then the load at

which the total energy in the buckled and unbuckled states are equal.

Friedrichs called this the intermediate buckling load. He did not

try to explain why or how the jump could take place. Friedrichs

also analyzed the stability of the complete sphere using a boundary

layer treatment and relaxed some unnecessarily restrictive assump-

tions employed by von Karman and Tslen. Friedrichs found that both

the minimum and the intermediate buckling loads were zero in the

boundary layer development for a complete sphere.

Tsien 5,6] attempted to explain the mechanism of snap buck-

ling by introducing additional energy considerations. His energy

criterion stated that under average laboratory or actual service

conditions the most probably equilibrium state is that with the

lowest possible energy level. In calculat! g thre energy levels be-

fore and aftar buckling the elasticity of the londing system must

be ta:en into account. Different buckling loads are therefore pre-

dicted for the sr,.e shell with different loading systems by this

theory. For dead loading the load necessary to cause Instahility

is the same as V'riedrich's intermediate buckling load. Tsion's

principle, however, adds the assumption that there always are dis-

turbances of sufficient maCnitude present to overcome the stability

of the unbuc-led ttate. However, if disturwbances of such a magni-

tude are admitted there appears to be no reason why the system

could not Jurp from a state of lower to a state of higher energy,

provided a stable buckled state exists at that load. The lower

buckling load is the lowest load for which a stable buckled state

exists, and therefore the lowest load for which the system could
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a
remain in/buckled position if sufficiently disturbed. Below this

load only oscillations about the unbuckled state can take place.

The energy loadas defined in this manner, therefore loses its

original meaning.

Tsien investigated the stability of complete spheres under

hydrostatic pressure and cylindrical shells under axial compression,

and obtained fairly good agreement with experimental results. Al-

though Tsients results and more recent work using the energy ori-

terion by Lo. Crate and Schwarz (7] gave good agreement with exper-

iments, there are strong objections to its validity and therefore

to its acceptability. These objections are well summarized in the

survey paper by Fung and Sechler (8] and are based on the fuzziness

of the theoretical foundation of the energy criterion and especially

the fact that it requires a knowledge of the geometrically removed

post buckling state to determine the onset of buckling. In addi-

tion, the tests of Kaplan and Fung on shells (9] showed little

difference for different loading conditions in opposition to the

theory. Tests on simply supported shallow arches [10] also agreed

well with the upper buckling load values which were appreciably

different from the loads predicted by the energy criterion.

At the present time the trend is away from Intuitive ap-

proaches such as the energy criterion and attempts are made to solve the

governing differential equations by the use of high speed digital

computers, e.g. Keller and Reiss (11], Budiansky (12] and Thurston

[13]. There is little doubt that this approach will eventually

give most of the required answers since for completely static load-

ing the buckling load must be a peak point of the appropriate load
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deflection curve, Such curves are, however, extremely difficult

to obtain since they should incorporate initial deflections of the

shell, the appropriate stresses and deformations that exist in the

pro-buckling state and, above all, must include the correct mode

into which the shell would initially buckle, Aside from the basic

problems associated with handling nonlinear problems, additional

complications arise when the important initial deflections are not

necessarily those having the form of the buckled shapeand when

transitional buckling modes appear that may also be appreciably

different from both the initial and the final shapes. The formula-

tion and numerical solution of nonlinear problems of this generality

still presents formidable obstacles.

Because of the difficulties mentioned above in contrast to

the simplicities offered by an energy approach, the authors have

felt it worthwhile to reexamine the theoretical basis of the energy

criterion. Its relative simplicity makes it particularly attractive

for problems in which additional complicating features such as

anisotropy, inhomogeneity, and combined loadings appear. In the

following discussion the term "energy load" or "energy criterion"

will be restricted to mean Friedrich's intermediate load or, alter-

natively, Tsients "dead weight" energy load.

The first part of this paper is devoted to an analysis of

the significance of the energy load for systems having force de-

flection characteristics of the form shown in Fig. 1. The general

discussion is preceded by a complete analysis of a simple mechani-

cal model which has such a load deflection curve. The discussion

itself is completely general and is not restricted to arch and shell
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structures - the arguments may be relevant to other systems which

experience similar behavior.

The second part of this paper is devoted to comparing the

results of the energy approach with those of more thorough theore-

tical analyses of low arches. A subsequent paper will investigate

the energy criterion in relation to the behavior of clamped

spherical caps and complete spherical shells.

A fairly complete theoretical and experimental analysis of

clamped shallow arches is performed. The theoretical work includes

consideration of a number of symmetrical deflection modes as well

as transitional non-symmetrical buckling. The experiments on arches

produced buckling load values and complete load deflection curves

which included the unstable transition region. The agreement be-

tween theory and experiment was fairly good.

The energy load computed on the basis of ideal geometry and

axially s'-mmetrical buckling is shown to be a lower bound for snap

buckling for systems influenced by non-symmetrical transitional

buckling modes. For a particular class of systems, the energy load

is also found to be unaffected by certain forms of initial imper-

fections and to be a lower bound for snap buckling in the presence

of those imperfections. The systems and imperfection3 are restrict-

ed to those for which the load deflection curve with and without

the inclusion of imperfections is anti-symmetrical about a common

straight line through the origin. Although only few structural

systems fall into this class, e.g., clamped arches, the actual

behavior of spherical caps and presumably other systems is close to

being the same. The energy load is found to be relatively
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insensitive to arbitrarily chosen buckling modes. In addition, both

the theoretical and experimental results for arches ard spherical

caps show that the difference between the energy load and the upper

buckling load diminishes the more the system is influenced by

non-symmetrical transitional modes and by destabilizing initial

imperfect ions.

Model for Snap Buckling.

To gain a better understanding of some of the concepts

mentioned in the introduction, as well as to introduce some new

ones, a simple mechanical model will first be investigated. The

bar spring system shown in Fig. 2 has many important features in

common with a low arch and a shallow cap. The model is considered

as hinged in the middle and at the ends, and subjected to a single

load P at the apex. The discussion will be limited to a low frame,

that is one for which

(a/L)<< 1 (1)

where a is the unstrained height and 2L is the width of the frame.

From the geometry the equilibrium equation is Immediately obtained:

P = k6 + 2T(a-b)/L (2)

where 6 is the vertical displacement of the apex, k the spring

stiffness and T the compressive force in the arms. Also from

geometry the strain in the arms is

e = b(b-2a)/2L2 (3)
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From Hook's law the force in the arms is therefore

T= -(AE/2L 2 ) b(b- 2a)

where'AE is the stiffness of the arms. Substituting for T in the

equilibrium equation (2) yields the load deflection relation of

the model

P = kb + (AE/L 3 )b(b-a) (b-2a) (5)

This is plotted in Fig. 3.

The curve can be considered as composed of two parts, a

straight line caused by the spring stiffness k, and a curve anti-

symmetrical about 6 = a. According to the classical criterion

instability occurs when the first maximum is reached or at the

point A in Fig, 3. This is usually called a limit or critical

point. In contrast to most buckling problems instability is not

caused by a bifureation of the equilibrium state but by the load

reaching a maximum. The lower buckling load of von Karman and

Tsien would correspond to the minimum point or point B in Fig. 3.

Both these points are obtained by setting

dP 0 (6)

By substitution from (5), this yields

6= a + (a2/3)-(kL3/3AE)1* (7)

The plus sign is clearly associated with the lower buckling load

and the negative with the limit point or the upper buckling load.

These two loads will coincide in a point of inflection with a
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horizontal tangent at 6 = a when the quantity under the root is

zero, If the root is imaginary the load deflection curve will be

continually rising and always stable, For instability to be possi-

ble therefore

(a2 AE/kL3 ) > 1 (8)

The intermediate buckling load or the energy load as defined

by Friedrichs, or by Tsien for a dead load, can be determined most

easily from the geometry of the load deflection curve. At the

energy load the total energy in the buckled and unbuckled states

are equal, or the change in energy from one to the other is zero.

In Fig. 4 the decrease in potential energy of the load in going

from the unbuckled to the buckled state is given by the rectangle

ABCD. The increase in strain energy of the spring and the arms is

given b7 the area under the load deflection curve between B and C.

The change in total energy will then be given by the difference

between these two areas. At the energy load, the two areas must

be equal. From the symmetry of the curve it is seen that this

occurs when the line BC passes through the crossing point of the

straight line due to the spring and the curve due to the effect of

the arms, The energy load is therefore

P = ka (9)

This is a function of the spring stiffness and the geometry but is

independent of the properties of the arms. This is quite remarka-

ble-and shows that imperfections thathave the effect of reducing

the stiffness of the arms only will leave the energy load unchanged.
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The energy load will cease to exist when the curve is reduced to

one with a point of inflection with a horizontal tangent. The

upper, lower and energy load would then be equal. If imperfections

of the arms are sufficiently large, the energy load may cease to

exist, but in that case instability would not occur either. Con-

sideration 0 imperfections of the ariE only would result in the

enerry load bel.nv a lolor bound on the loads that can cause

instability. This is true regardless of the magnitude of the im-

perfections. It may be objected that the height "a" of the model

enters into the expression for the energy load. Variations in "a"

however, should not be considered to be imperfections in the usual

sense of buckling problems but as changes in overall geometry.

The same could be said about the length of a strut in ordinary

Euler buckling i.e. imperfections are considered to be deviations

from straightness and not changes in the length. In the general

class of nonlinear problems under consideration, however, more

attention must be given to the definition of geometric "imperfec-

tions".

As an example of an imperfection, the arms can be considered

to have a sinusoidal centerline with amplitude a . The shortening

a of one of the arms subjected to the compressive force T is then:

2 22
e" T 2 7 ir + TL (10)
T-(it EI/L )

This must be equal to the shortening of the arms as caused by the

lowering of the apex of the model.

Then from Eq. (3),
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v 2 T 2 7 2 TL (11)
(2a-) = T-(n EI/L)

From the equilibrium equation (2) the value of T can be substituted

to give the load deflection curve

22F (P-k6)(2a-)
(Pikb/(a) + (P-k) -L2  i72- 0

I (P~mkb)/(a-b)j._21?EI./Lj' AE a-b 2

This is plotted in Fig. 5 for different values of y * It can be

seen that the upper buckling load is reduced by y Increasing where-

as the energy load remains unchanged,

If the possibility of the arms buckling is admitted a dif-

ferent mode of instability is added. Let

TE = 2 EI/L 2  (13)

be the Euler load o. the arms. For

T <TE

the load deflection curve is still given by (5), but when T = TE

it i3 given by substituting for T from (13) in the equilibrium

equation (2). This yields

P = kb + (2nEI/L3 ) (a-b) (14)

which is a straight line passing through P = ka and b = a as shown

in Fig. 6. Instability will now occur when the force in the arms

becomes TE or at the point B in the figure provided the slope of

the line BC is negative or zero. If the slope is positive the

load deflection curve will be continually rising and stable for
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all loads. From Fig, 6 it is seen that the slope becomes positive

when the column buckling load P is less than the energy
T

load Pe" The energy load is therefore again the dividing point

between stability and instability if the possibility of transi-

tional buckling modes is admitted. The energy load is therefore

also in this sense a lower bound on the snap buckling load of the

complete system.

From the discussion of the model it is seen that the energy

load calculated on the basis of perfect geometry and the basic

deformation mode is a lower bound on the snap-buckling load in

the presence of imperfections or additional transitional modes. It

is of interest to see if this interpretation of the energy load is

true only for this particular model or if it is true for more

general classes of systems.

Influence of Transitional Buckling and Imperfections in Systems
That Exhibit Snap Buckling.

For systems having load deflection curves similar to Fig.l

in the absence of both transitional buckling modes and initial im-

perfections, the problemi is to determine the changes those factors

could have on the basic curve and the relevancy, if any, of the

energy criterion. The nature of admissible load deflection curves

for transitional buckling modes will first be examined. Transi-

tional buckling refers to the case where the mode of the inter-

mediate unstable equilibrium states is essentially different from

both the initial state and the final buckled state. Examples of

transitional buckling are column buckling of the model previously

discussed and anti-symmetrical buckling of simply supported arches
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which was investigated by Marguerre [14] and is discussed in (3].

The basic system under discussion will be assumed to have

only one pair of stable initial and final equilibrium states in

the load range PL < P -< as indicated by the curves OA and BC

respectively in Fig. 7. Load deflection curves that cross over

themselves will be ruled out. The overall (or average) behavior

of most structural elements that exhibit snap buckling would have

equilibrium characteristics similar to Fig. 7. The relevant

question for transitional buckling is the nature of possible un-

stable equilibrium paths connecting the two stable branches. Alter-

natively, the problem is the determination of admissible paths

connecting the two stable states that do not require any input or

release of kinetic energy.

In discussing snap buckling of a system with many degrees

of freedom it is necessary to introduce some characteristic dis-

placement function in order to describe the geometric dependence.

The function that appears to be an appropriate and consistent in-

dicator of the gross behavior is the one that appears in the ex-

pression for the work done by the external force system (the

generalized displacement). For the case of a concentrated force

this would be the actual displacement at the point of application

and in the direction of the applied force. For hydrostatic pres-

sure it would be the change in volume. The integrated average

displacement used as the geometric reference by Budiansky (12] is,

to first order terms, equivalent to a volume change. The general-

ized displacement from the work expression will be used as the
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geometric reference parameter in the following general discussions

and in the particularexamples.

The elastic strain energy U of the system is assumed to be

completely defined in the unbuckled and buckled stable equilibrium

states.The work done by the external force system P during a small

change in the generalized displacement v is Pdv. In the absence

of kinetic energy this must be equal to the change of csrain energy

during the same process,

dU = Pdv (15)

If the total potential energy H defined as

H U- Pv

is introduced, then

dH = dU - Pdv - vdP

and from (15)

dH = - vdP (16)

From the definition of the total energy it is seen that it is

also completely defined in the unbuckled and buckled stable equi-

librium states. Integrating (16) along a path connecting two

such states a and b gives

b

Hb -Ha i vdP (17)
a
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where the integral depends upon the path. This integral can be

interpretated graphically as the area between the path and the P

axis. This area must therefore be the same for all paths between

the states a and b if no kinetic energy is involved. At the

energy load, P in particular, H1 = H2, and setting a = 1, b = 2

to correspond to the points in Fig. 7,

2

{vdP = 0 (18)

1

and the area is therefore zero. This is the same criterion that

was used to determine the energy load for the model. Some equili-

brium curves that would satisfy (18) are shown in Fig. 7 by the

dashed lines. Portions of these curves, except the straight line,

would be stable equilibrium states aside from OA and BC and must

therefore be excluded. The straight horizontal line is therefore

the only possible completely unstable or neutral equilibrium path

connecting the unbuckled and buckled states at the energy load.

Starting from above the energy load, possible unstable

equilibrium must be similar to the curve 3-4 in Fig. 7. Since

the portion of the curve 1-3-5-4-2 can be considered as a path

connecting 1 and 2 for which (18) holds, it follows that the area

enclosed by 1-3-5 must be equal to(minus)the area enclosed by

5-4-2. The path 3-4 must also be monotonically decreasing to

satisfy the condition that it be a locus of unstable or neutral

equilibrium states. Starting from points below the energy load,

no path satisfying the requirements can be found. The energy load

is therefore the minimum load from which unstable equilibrium



paths could start, i.e. it is the minimum load for which a bifurca-

tion of equilibrium due to the occurrence of other modes would

lead to snap buckling of the system.

Some other general statements follow almost directly. For

a system with a load deflection curve of the type shown in Fig. 1

the energy load must lie between the upper and lower buckling loads

since the two shaded areas must be equal. The three critical loads

are equal when the load deflection curve has a point of inflection

with a horizontal slope. It is also seen that for the same load

the total energy H along BC (Fig. 7) is less than H along OA for

P > P 0", Since BC is the locus of stable equilibrium states, the

potential energy in adjacent non-equilibrium states (at the same

load) must be greater than for points on BC. The energy load Pe

can therefore be defined as the iminimum load for which the total

potential energies are equal in the unbuckled state (along OA) and

in any arbitrary buckled state whether or not it is an equilibrium

state. The buckled state that gives the true minimum must, of

course, be the equilibrium state 2. This variational formulation

for calculating the energy load may be useful since it does not

require the prior determination of the buckled equilibrium states

BC. The energy load determined by such a variational procedure

would be an upper bound if the Initial state along OA is exact and

the buckled state is approximated, and would be a lower bound on

the real energy load if the reverse were true.

The role of inwperfections in nonlinear systems is a much

more difficult problem. Part of the difficulty is due to the

vagueness of any definition of "imperfections" other than any
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arbitrary deviation from the pre-assumed "ideal" geometry that

satisfies the geometric boundary conditions. It is not surprising

that "imperfections" can have vastly different effects according

to their manner of introduction in a specific problem.

In linear buckling problems, imperfections are generally

taken to mean the deviations from the idealized geometry that in-

fluence the destabilizing (or stabilizing) role of the membrane

stresses. This same concept is usually used in nonlinear problems

in the sense that the terms due to the imperfections appear only

in expressions for the membrane energy or in conjunction with mem-

brane stresses in the differential equations. The imperfections

do, however, influence the complete problem since the membrane

and bending stresses and the displacements are all coupled in a

nonlinear problem.

The imperfections considered in the analysis of the model

were deviations from straightness of the arms and therefore had

the same mode as that corresponding to transitional buckling.

The energy load was found to be unchanged and to be a lower bound

for snap buckling in the presence of these imperfections. Another

kind of imperfection in the model problem would be a change in the

height of the apex which would correspond to a change in the basic

geometry and therefore in the energy load. It is convenient to

designate these two basically different types of imperfections as

A and B respectively for reference in discussing more complicated

systems.

The general conditions required for imperfections to be of

type A are of particular interest since the energy criterion then
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has a definite physical interpretation. We shall consider systems

for which the resistance to deformation can be subdivided into

"bending" and "membrane" contributions and where the membrane

stresses are symmetrical in the stress - generalized displacement

plane with respect to a particular displacement value. This char-

acteristic is shown in Fig. 8 where the stress deflection rela-

tionships are assumed to be symmetrical about the vertical line A-A.

The strain energy of the membrane stresses is a quadratic function

of the stresses and would therefore have the general form shown in

Fig. 9. It would also be synetric about A-A. The membrane stress

contribution to the load deflection curve would then be anti-sym-

metric about A-A, since that curve is obtained by differentiating

the potential energy with respect to the generalized deflection v

In nonlinear structural systems the terms corresponding to the

bending resistance are generally linear in the displacements. The

complete load deflection curve would then have the same form as

that for the model, Fig. 3.

If the inclusion of geometric imperfections into the problem

only alters the magnitude of the membrane stresses but does not

change the bending contribution or the basic symmetry, then the

energy load must remain unchanged. A sufficient, and seemingly

necessary, condition that the energy load remain unchanged in the

presence of geometric imperfections is, therefore, that the membrane

stresses for the perfect system are all symmetrical about a common

generalized displacement value, and that the only effect of the im-

perfections considered is to change the magnitudes of those membrane

stresses without altering the symmetry. A further consequence of
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these conditions is that, as was shown in the case of the model,

the energy load would also be a lower bound on snap buckling in

the presence of the imperfections. The imperfections would then

be of type A discussed previously.

It does not seem possible, however, to determine a priori

whether a given structural system and arbitrarily chosen imperfec-

tion functions will behave in the above manner. In the subsequent

analyses it is found that the behavior of the symmetrically loaded

clamped aroh does oonform with the stated conditions. For the

clamped arch anti-syrmetrical imperfections are found to be of

type A (the transitional buckling mode is also anti-symmetrical),

while symmetrical imperfections are of type B. The clamped spheri-

cal cap, on the other hand, does not possess the required symmetry

properties of the membrane stresses, so that it canot admit im-

perfections strictly of the A type. The symmetrical imperfections

considered by Budiansky in (12] for the cap appear to have proper-

ties similar to those of type B.

Cylindrical shells also do not appear to have the properties

required for a class of imperfections to be strictly of type A.

It is Interesting to note, however, that the results of [15, 16]

approximate the expected results for imperfections of type A. The

upper buckling load for the largest imperfection parameter that

shows snap buckling is reasonably close to the energy load of the

perfect shell.

Although the energy criterion does not maintain any definite

physical meaning in the presence of imperfections of type B, which

can be related to changes in the overall geometry, it can
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serve as a measure of the gross influence of these imperfections

on the nonlinear behavior of the system. The change in the energy

load due to those imperfections would be an indication of the sen-

sitivity of the system to the geometry changes. This viewpoint is

of some practical interest since the computation of the energy

load is considerably simpler than the complete solution of the non-

linear differential equations. This would be particularly true

in problems where the mode of sensitive imperfections of type B

are essentially different from either the transitional or final

buckled modes, e.g. axi-symmetrical imperfections in cylinder

buckling problems.

Analysis of a Clamped Low Arch Subjected to a Central Concentrated
Load

The clamped low arch was chosen as a specific structural

system to examine the general results of the preceding section.

Although the simply supported arch has been thoroughly investi-

gated by Pung and Kaplan (10] and by Biezeno and Grammel (17], the

clamped condition initially appeared to offer more basic compli-

cating features. In nonlinear problems particularly, a change in

the boundary conditions can often alter the complete nature of the

problem. The anticipated difficulties did not, in fact, materi-

alize in this instance, The problem of the clamped arch, however,

besides being of some practical interest, does serve as a very

good example to discuss the significance of the energy load in

relation to the upper buckling load, geometric imperfections, tran-

sitional buckling modes, and varying degree of approximation of

solutions, The clamped arch problem also contains a number of
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similarities to that of the uniforml loaded spherical cap. The

trend of results of the arch problem serves as a good indicator

of the behavior of the latter more complicated structure.

From the experimental side it is possible to obtain better

control with fully clamped end conditions. This is especially

true at high temperatures where binding at the supports would be

a problem, and an important part of the general program was the

investigation of snap buckling due to high temperature creep.

The elastic buckling experiments, which were performed at room

temperature, were concerned with obtaining complete load deflec-

tion curves, including the unstable regions, for a wide range

of arch geometries.

(a) General Formulation,

The circular clamped arch loaded with a single central con-

centrated load as shown in Fig. 10 is analyzed. With the usual

assumption for thin curved beams, the axial strain s is

= (l/R) (ua - w) + (1/2R2 ) (wa)2  (19)

and n,the change in curvatureis

X = (1/R 2 )waa (20)

where u is the tangential and w the radial displacement function,

R is the radius of the arch,and a is the polar angle measured

from the center of the arch. Differentiation with respect to

a is denoted by the subscript a .

The strain energy due to the axial deformations, non-

dimensionalized by division by the factor EtfR,Is



21

Um = (1/2) f2 (21)
-1p

and that due to bending is

Ub = (t 2/24) x 2 da (22)

where t is the thickness and fr the width of the beam, E is

Young's modulus and P half the included angle of the arch. The

change in potential energy of the load, in non-dimensional form,

is given by

U - [P/EtRf](w)a= 0 (23)

where P is the concentrated central load. The total energy H is

given by

H = Um + Ub + Up (24)

The tangential displacement function u can be eliminated

from the energy expression. The variation of the total energy H

with respect to u must be zero for equilibrium. Since u only

appears in U., the membrane strain energy, this yields immediately

a= 0

or

= C (25)

where C is a constant. Substituting in (25) from the strain dis-

placement relation (19) and rearranging
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u= w - (1/2R) (wa) )2 + CR

Integrating between a = P and a = "8 gives

p 2(ul = J [w-(l/2R)(w) ]da + (ORa]
-iB -6 -p

The boundary conditions on u are

u = 0 at a= + (26)

The left hand side is therefore zero. Solvin.r the r-.rainsr for

the constant C which, from (25) is eq.ial to e, yield3

C - - (t/.vLw -(1/2R)(wa)']da (27)
-j3

Substitut.ng t1-is va!_,,e for into the energy expression

(24), and for x from (20), gives the total en6rgy H as a function

of w only

2 2 '

H = -rJ(w - 1wda + a - 0 7M

where the brack3ts in (w..  and (wae) 2 are left out. In the

followinr, when tais is dcne it will ulways mean that the differ-

entiation is performed firmt

(b) Approxirate Solution

A first nunoricel approximation can now be obtained by

assurning a function for w, Let

w = AwI( ) + B w2() (29)
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where w1 is a symmetric and w2 an anti-symmetric function in .

is the ratio a/P and A and B are the amplitude of the two

deflected shapes. Substituting this value w in the energy ex-

pression gives

H = (1/4R2 )(AC1 + PBC2 - (I/2RP) (A2C3 + 2ABC 4 + B2C5)]2

+ (t2/24RP 3 ) (A2C6 + 2ABC7 + B2C8) - (P/EtRf) (AC9 + BCI0)

(30)

where the constants are given by the integrals

1 1

01= fwjd c2 - w2d

-1 -1

11

03 = 2 w1 d ~ wl w2 td
22-i -l

1 -1

-1 -11 1
C 1 ( 2 d 08= J 2

C9 [11 IO w2 d

C9 = [w.] =0 010 = 0w2 ] ;

Introducing non-dimensional amplitudes

a = (A/Rp2 ) b = (B/RB) (32)
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and load

= R/Et 2 fp) (33)

and a geometric parameter

X = (P2R/t) (34)

the energy can be written as

H* = =X= I X14) [a%- + bC2 -I12) (a 2 C3 + 2abC4 + b2 C5)2

+ (124X) (a 2 C6 + 2abC7 + b208 ) - P*(ac + b%-O )  (35)

6 7 89 ~ )3)

Becau se of the symmetry and anti-symmetry of w and wi2 it

can be seen immediately that

c2 = c = C7 = 0 = 0

The energy H* therefore reduces to

H* = (X/4)(ac1 - (1/2)(a 2C3 + b2 C5)1 2 + (l/214X)(a 2C6 + b 2 C8 )-P*aC9

(36)

For equilibrium:
aH* H*0

From the above this yields

P*C 9 = (X/2)[aC1- (1/2)(a2C3 + b 2 Cs)5 CI--C3 a) + (1/12X)(aC6 ) (37)

(bC5X/2)[aC1 - (1/2)(C2)C3 + b2C5) . (1/12%)bC8 = 0 (38)

The last equation has the solutions

b = 0 (39)
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b = (2/c)(aCi - (a2C3/2) - (C8/6X2C5)] (40)

If the quantity under the root is negative, the only real solution

is b = 0. The deformation will then by symmetrical. The condi-

tion that a real solution for b exists other than b = 0 is there-

fore that

aC1 - (a2C3/2) - (C8 /6× 2
5 1 C 0

Which, when solved for a, gives

a (Cl/C 3 ) - [(Cl/C3 )2 - (C/3C3O X2)] (41)

a < (c1/c3 ) + (Cl/C 3 )2 - (c8/3CcX 2 )Jt (42)

For "a" real, these relations will be satisfied over a finite

interval if the quantity in the root is greater than zero. The

necessary condition, therefore, that the anti-symmetrio component

be non zero is that

X2 2 C3 C8/3Ci 2 C5 (43)

If condition (43) is not satisfied the load deflection

curve is obtained by setting b = 0 in the equilibrium equation

(37) thereby obtaining

P (C 6/12CX)a + (d.X/4C )afa.-(C /C 3 )1a-(2C,/C3 )] (14)

Such a curve is plotted in Fig. 11. It can be considered to be

composed of a straight line due to the bending stress, and to a

curve antisymmetrical about a = CI/C 3 due to the axial stress.
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This is exactly the same kind of curve as was obtained for the

model. The energy load can therefore be obtained from inspection

as

P*e = (l/12X) (c1C6/C3 C9 ) (45)

The range of stability can be found from the second varia-

tion of the energy. Substituting b = 0 into the total energy (36)

and differentiating twice with respect to a yields

a 2 H* (/2)(C 1 -aC,) 2 - aC C + (a2 2/2)] + C6/1) 6
aa 1 3 3 (61

For stability, this second variation must be greater or equal to

zero. Solving for a gives

a < (c1 /c 3 ) -11c3)1ciic3) (C6/9 c3 (47)

or

a I (C9 /C 3 ) + [1(1/3(C/C3)2 - (C6 /9 C322)]i (48)

These portions of the curve are, of course, the portions

with a positive slope in ?ig. 11. The region of the load defleo-

tion curve that is unstable vanishes when the quantity under the

root in (47) and (48) becomes zero. An unstable region will

therefore exist for

X2 > C6/3C12  (49)

and instability will occur after the equality sign in (47) is satis-

fied. Substituting this value for a into the load deflection

relation (44) gives the upper buckling load for the symmetrical
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mode.

0c 6  1 02 6 3/2
U; l 2C3C9? X +CX~(O

If the inequality (43) Is satisfied, b is not identically

zero but is given b the expression (40) in the interval given by

(41) and (42). Substituting for b from (40) into (37) yields the

load deflection relation in this interval.

P* = (C3 C8 /12XC 5 C9 )((Cl/C3 ) - a] + (1/12X)(C 6a/C9) (51)

This is a straight line passing through the energy load P* =Pe

and a = CI/C 3. The total load deflection curve will be then be

given by (44) except for the values of a in the interval (41)

and (42) where it will be given by (51). This is plotted in Fig.ll.

The value of a at which the non-symmetrical transition mode comes

in, aT, is obtained from the equal sign in the inequality (41).

However, buckling may already have taken place in the symmetrical

mode before this value of a is reached. The condition for buckling

in the non-symmetrical mode must be

a <au

where aU is the deflection at the upper buckling load (Fig. 11).

Substituting for au and aT from (47) and (41), upon making both

of these inequalities into equalities, gives for aT < aus

_ (3C 3 C8 .C5 C6 )/6C1
2 C5  (52)

The behavior of the arch for different values of X is
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summarized in Fig. 12. The non-symmetrical buckling load is

obtained by substituting for a in (44) from the equality condi-

tion of (41)

Pic= +1 M[; (W) 1 (53)

12C3C9 X 5 9 9 w3 3C 3C 5 0

The stability of the anti-symnetrical mode can be deter-

mined from the slope of the load deflection relation (51). This

slope is

dP*Ta- (1/12X)[-(C3 C8 /C5C9 ) + (c6/c 9 )]

which is negative, and hence unstable, for

C3 C8 > C5c 6  (54)

The first term in (53) is the energy load (45), and therefore

from (54) and (53) the anti-symmetrical mode will be unstable

when

~T>P

This result concurs with the general conclusion obtained in the

previous section.

(c) Determination of Buckling Loads by Classical EiRenvalue
Theory.

The instability of the arch can also be approached by con-

siderin3 small displacements about an equilibrium position as in

the classical eigenvalue formulation. The buckling load is deter-

mined in this procedure as the load for which geometrically adja-

cent equilibrium states could exist in addition to the original
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state at the same load. Both the upper buckling load PU and the

load for the onset of transitional buckling PT can be determined

by this method.

Denoting the initial state by superscript o and the buckling

displacements and strain by superscript, . the change in strain

energy during buckling is

U a (1/2) i 2

-- (1 (s, + 2e'eO)da

L = (t2/2) S j ,2 + 2x 0 ,)da (55)
-1p

UI = -(P/EtRf) [w']a.= 0

For equilibrium in the buckled state, the variation of the

total energy must be zero. The variation with respect to the

tangential buckling displacement u' gives simply

el =0a

or by integration

E' = C' (56)

The buckling strain, which is the difference between the

final strain and the strain in the unbuckled state, is therefore

a constant. From the definition of the buckling strain, the re-

lation between that strain and the displacements is

= (l/R)(u, - w,) + (1/2R2 )(w, 2 + 2w°w0 ) = CI (57)awa5 ' a
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which, upon solving for u', gives
a

Us = w- (l/2R)(w,2 + 2wow-) + CR (58)
aaa

Integrating between a = and a = "1 and utilizing the clamped

boundary conditions (u 0) yields
p

C1 = -(l/2RP) [wI -(l/2R)(w. 2 + 2wow )]d (59)-P

Substituting this value for C' into (56), the change in energy due

to buckling can be written as

H' = (1/0p) [w' -(1/2R)(wa 2 + 2wOw' )d0.

(t 2 /24F ) T(wj. )2 .da °-0/2R P) w,(12/2)(w&+2ww,) da da

+ (t2/12R2 ) , '  a  -(P/EtRf)(w,)cl= o (60)

Because the initial state is an equilibrium state all the

linear terms in w must cancel out either algebraically or due to

boundary conditions. If it is assumed in addition that w is suffi-

ciently small so that terms of higher order than second can be

neglected (in accordance with the basic assumption of classical

buckling theory), then the energy change is reduced to



31

J 2p

+ (1/2R2 )e° 0 w,2 da (61)

The pre-buckling strain e can be taken outside the integral since

It is a constant, Ass"ume that

w I  :: Aw 1  + Bt 2

where w is a syrnmtric furntion in a and w 2 is anti-syimetric.

The functions w and w2 are therefore orthogonal in the interval

-. a < P * Substituting into the energy expression (61) gives

2
HI = (1/4R2 P) (A'wI + B"1,4 -1/R).,(A' t. + B'w2 a )d

+ (t2/24R4) f[Alwlaa+ B'w2 oa]2 d +'(1/2R 2 )SO ;,(Atal(l+ B'w2 a)

(62)

Because of the orthogonolity properties, this reduces to

HI =A 2  r(W 1  (I/R)ww la )da] 2

(t2/24R4) 'w 2 + e/2 dcc
iaad (eO2R2)wlada

r -

+ B' 2 (t2 /24R4 ) Pw2 ada + (eo/2R2 ) w22 dal (63)

-p )~ j ~c I
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For equilibrium in the buckled state

2H 1 8H I
C71 = M t 0

Each of the two expressions in parentheses in (63) must therefore

be zero.

Mrom the second,

E0 (t 2 /12R 2)TPw 2 a/d1 2d (6Li)

or, if written in terms of ,= a/',

eo (t 2 /12R 2 P2 ) 1w 2 d /w 2 2d (65)

Ml

This gives the strain in the arch when the non-symmetric

mode buckling load is reached. From the form of the expression

(65) it is seen that the stress is equal to the second mode Euler

load of a clamped column of the same length as the arch. By

substituting from (27) for so the deflection at buckling can be

obtained

3 1 / -

Assuming that w0 = AwI( ) and introducing the non-dimen-

sional amplitude a defined in (32), and the parameter X defined

by (34) the above expression becomes
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a2 w1 d - 2a 1 dE + (1/3x2 ) [w 22rX fW22d = 0
-1 -1 / -r

Upon substituting for the integrals from (31),

a2 - (2C1a/C3 ) + (C8/3%
2C3C5 )= 0

This is the same condition as obtained previously, (41), for the

amplitude aT at which the transitional mode appears..

The first equilibrium equation, obtained by setting the

variation of Ht, (63), with respect to A'equal to zero, can be

written, using (27) for eo,

(l/2p)f (wi (1/R)ww la ] 2d + (t2/12R2 )%w d

- (1/2PR) ow - (1/2R)w a2JdJ{3 l = 0 (67)

Again assuming that w° = AwI the equation becomes

(11/2) [wI - (A/R)w21Id + (t2/12R 2 ) Pw2d

(l/2RP) [Aj- (/ 2 d da 0 (68)
-(I/2R ) { (Aw I - (A2/2R)wl]d}'{wi2

Using the previous notation, this equation reduces to

2 . (201a/C3 ) + (2/3)(C 1/C3 )2 + (C6/9X2 C32 ) = 0
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which is the same condition as obtained previously for the deflec-

tion aU at the upper buckling load (47). The strain at which this

occurs can then be determined from (27). The corresponding load

PU can be obtained by setting a = aU in the load deflection rela-

tion which would be identical to (44).

This analysis shows that although the problem is basically

a nonlinear one, both the upper buckling load for symmetrical

buckling and the non-symmetrical transitional buckling load can

be determined by the classical eigenvalue procedure. The essential

difference between this problem and the standard ones is that non-

linear strain displacement relations must be used in describing

the pre-buckling states,

(d) Analysis of a Geometrically Imperfect Clamped Arch.

It is of interest to compare the behavior of the clamped

arch with initial imperfections with the observations in the

preceding general discussion. It will be assumed that the devia-

tions from the perfect circular shape are given by the functions

we and ue The elastic membrane strain can then be written as

= (1/R)(u. - w) + (1/2R2 )(w2 + 2w w) (69)

and the change in curvature, as before, is given by (20). The

energy expressions (21) (22) and (23) still hold. By varying the

total energy with respect to the displacement u, as previously,

the axial strain is found to have a constant value given by

= - (1/2Rl3) "[w - (1/2R)(w2 + 2w we)]da (70)
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and therefore the total energy can be expressed as

P12H = ~ ~d 1 4IT (2/24R2)~~d

- (P/EtRf) (w)a= 0 (71)

It is assumed that w is given by (29) and the initial imperfections

by we = Dwl() + Ew2 (() where wI and w2 are the same functions

as in (29). The total energy can then be written as

(X/4)aCi + bC2 - (1/21(a2C3 + 2abC4 + b2 C )

- [adC3 + (bd + ae)CU + beC 5 }

+ (1/241.)(a 2 6 + 2abC 7 + b2 C8 ) - P*(aC9 + bC10 ) (72)

where the quantities a,bd,e are non-dimensional amplitudes obtained

by dividing the corresponding capitalized quantities by the fictor

RP2,e.g. (32).

Because of the orthogonality of the functions wI and w2*

C2 = C4 = C7 = C10 = 0

Hf* therefore can be reduced to

H ) I/4)[aC I -( 1 /2)(a 2 C3 + b2 C5 ) -(adC 3 + be C5 ) ] 2

+ (1/24 )(a2 C6 + b 2 C8 ) - P*aC9  (73)

all* all*
For equilibrium, 7- 0 O 0,

a.-,~0
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which results in the following two equations:

pc 9 - (V2)[&Cl-(1/2)(a 2 C3 + b2C5)-(adC3 + beC)](C,-aC3-dC3 )

+ (1/12X)(aC6 ) (74)

(X/2)[aCI-(1/2)a2 C3 + b2 C5)-(adC3 + beC5 )][bC5 + eC5]

- (1/12X)bC8 = 0 (75)

Unlike the corresponding equation for the geometrically

perfect system, (38), b = 0 is no longer a solution, The deform-

ations in the anti-symmetrical mode therefore oomences immediately

at the onset of loading.

Upon changing the origin in the load deflection plane by

the transformation

at = a - [(C1/C3 ) - d] (76)

the two equilibrium equations (74) and (75) can be rewritten

pc (%/2), (C /2)1 ((C/C )-d] 02' " [(b 2 5/) + be c
9C3/1) bC5] 3

L.j

+ (C6/12)[a' + (C1/C 3 )-d] (77)

(X/2) (C3/2)j t(Cio3 )-d) 2 -a 2.m(b 2C/2) + beC5]1

(b+e)C5 - (bC8/12X) = 0 (78)
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From (78) it is seen that the amplitude of the anti-

synmetric mode b is independent of the sign of at, i.e. b is

symmetric about a' = 0. The load deflection relation (77) consists

of a membrane contribution (the quantity containing%) and a bend-

Ing part (containing I/X). The bending term is linear in a' where-
a which

as the membrane term is/cubic in at/ is anti-symmetrical about and

passes through a' = 0. The load deflection curve is therefore com-

posed of a straight line, and a curve anti-symmetrical about

a = [(C 1/C 3 )-d]. The energy load is therefore given by

P0 = (C6/12XC9)( c/c 3 )-d] (79)

If the initial imperfections are anti-symmetrical, d = 0, and the

energy load is the same as for the geometrically perfect arch (45).

The behavior of the clamped arch is therefore similar to

that of the model in that the behavior in the presence of anti-

symmetrical imperfections is identical to the type A imperfection

of the model. Symmetrical imperfections of the arch would be of

type B and correspond to a change in the overall geometry and

would result in a change (lowering) of the energy load as noted

in (79).

(e) More Exact Solution of the Nonlinear Deformations of the
Clamped Arch,

A better approximation to the load deflection relations and

to the buckling loads of the arch can be obbained by including more

terms in the expression for the deflected shape. Symmetrical

deformations will first be considered, The deflected shape is

assumed to be given by
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r

W AWn(,) (80)

An is then the amplitude of the deflection function wn and ( =

as before. Substituting the deflncted share (80) into the expres-

sion (28) for the total energy 7iolds

1 r n In r " r 1

where

If w n and Wn K form orthogonal sets such that

.Wnem td 0 n m

o 2

and2L.) 1 ~ f (83)

{wn~elm~eE= 0 n 'm
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The total energy is reduced to

1 1

H* (),A.) (an fw~d] - j a~ 2{ w2 dt
1 -1

1 2~ 1

The equilibrium condition is

aH * =0

which leads to r equations of the form

Fr

f. woo 1_*p_j~d a Iwe +(1/12X'a F 2 ,d - ~ 1r =0 (85)

The following notation is introduced:

1n jwnd C2n ne{t~d

(86)
1

3 n= Wnd n Wn]

The equilibrium equations for symmetrical deformation of the arch

can then be written as
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(X/2) %oln- R!C~n Cln-anC2nJ(lA2)&nC3 n-*~= (87)

The criterion obtained previously for the occurrence of

anti-symmetrical buckling (66) remains essentially unchanged. The

only modification would be that the more general expression (80)

would be used to represent the pre-buckled state. This generali-

zation of (66) leads to

11
r 2 2-2(8

Z (an .,nd] - (1/2) F (an /6 (88)

where

K = wak f wgd (89)

and wa is the anti-symmetrical buckled shape. Upon using the

expressions (86) for the constants, the criterion for anti-

symmetrical buckling becomes

TaC - (1/2)Z a2  = K/6 2  (90)

1 1nn n2n

To obtain the anti-symmetrical mode buckling load the set

of equations (87) has to be solved simultaneously with (90).

Substituting (90) into (87) yields

(K/12) [ Cln - anC2n] + (1/12 X)anC3 n - PTc4n = 0 (91)

which can be solved for an



41

an C (12%P"*'C .- KCIn)/(3n- K02 n) (92)

This value for an can now be substituted back into the buckling

criterion (90),

r r'
(12%P;)2 E c~( [C 2~ X (2jX*)ECCC(

T n 2nq C 3n - C2n T2 p inC 314.n/(3ntmKC 2 3

r 2
+ (K/3X2 ) + K Z [(Cn(2C3n- KC2n)/(C3n - KC2n) = 0 (93)1

This can be written as

(12 %P)2 1 " 2 "4XPD 2  + /X) +. 3 = 0

and therefore the asymmetrical mode buckling load is given by

= (I/12{(D2/D) I ((D2/D1 )2 - (KD3/D)- (K/32 ) (9)

where

r ,22
D, = Z [cne/(C 3n - KC2n) I1

r 2
D=2 7 [lnC 3nC4n/(c3n - K"2n )  (95)

D3 = [n(2C 3n- KC2n)/(C3n- KC2
13m7 ln 3n 2 m m K 2nJ1

The second buckling mode can therefore be determined fairly

easily by evaluating the C's and D's and solving a quadratic for

12X P".

For a clamped arch a general displacement function that

satisfies the boundary conditions is
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wn "  l + cos n x, n odd
(96)

wn "iol n osn ], n even

This will also satisfy the orthogonality relations (83), The

constants (86) can then be readily evaluated.

Cln -l.

02n - n2n2/ all n (97)

C3n a n4U4/.

i , n odd
, 0 n even

The quantity K is the coefficient in the equation for the

second mods buckling load for a clamped column, namely,

K - 20.16 or 2.0426%2

The constants (95) then become

1

1 0. n even

r
D2 - E [4/(n-2.0426)2]. n odd (98)

1

O. n even

r 22D 3  E 4(2n2-2.0426)/n2r(n2.0426)2], all n
1
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The values of these constants are for

r = 1:

D1 I 4 x 0.9210/C 6 , D2 = 4 x 0.9210/ , D3 = - 4 x 0.00387/n 4

r = 2:

D and D2 unchanged and D3 = 4 x 0.3498/7C4

For r = 6. which is sufficient to determine the constants

to 3 figures after the decimal point, the results are

D1= 4 x 0.9233/ 6 , D2 = 4 x 0.9436/%4 , D3 = 4 x 0.3960/ 4

The anti-symmetrical transitional buckling load can then

be readily obtained from (94) for these three cases

r1

* = (it2/12 1 + (1.0858 - (0.1847A/%21

L2 %~,i~)f (0,2245 - (o,1847n41/%2)JjPi L1
= 2 (/12X)l.0219 + (0.1685 - 0.1843n 4/ 2 1i

These three functions are plotted in Figure 13. There is

an appreciable difference between the curves for 1 and 2 terms,

but not much between the curves for 2 and 6 terms.

Determining the upper buckling load for the symmetrical

mode, Pup is somewhat more involved, It is therefore only attempted

for r = 1 and r = 2, For r = 1 the upper buckling load is obtained

immediately bN substituting the constants (97) into the expression

for one term obtained previously (50) observing that
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Oin C c2n = 30 C3n C60 Cn =C9 when n 1

This gives
(R2/1%) 23/2

= ( )A) (41/37) - (1/92) (99)

The energy load for a single term is obtained by substitut-

ing the values of the constants into (45) thereby obtaining

%2 /12% (100)

The next approximation, r = 2 will be considered, From the

equilibrium equations 87) it is seen that

=________ P*%- (mCulX)
PeCnm(anC~n/l2X) = P*SM_____________

I1n - nC2n Clm - amC2m

which can be solved for an in terms of am and the load P*

n *(c= 5CiRlnczl-amCInC2m) + am(ClnC3 Wl2 X)

2 -+ (%/12%)(C2nC3m-C3nC2m) + (CImC3nl2X)

For r = 2 this reduces to

7 2a - (k - P*)/(k 2 + P*) (101)

where

k1 = 481, k2 = 1/ l[(a/16) -(1/3)],

2(102)a = ,t a1 , and I, = xA/ (12
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The first of the equilibrium equations (87) can then be written

as

%2a 1 + na 2 - (a 2i /6) . a2 7k/2)] [1 - (a1,t 2/4)j]

+ (al~l 6/24 2)-(27E2p*/%) = 0 (103)

Upon substitution for na 2 from (101) and the use of the notation

(102), a relation between a and e can be obtained. This is

I a (a2/8)1(k2 + P )2 .(k .. ?Xk2 + P*).(l/2)(kl .P )2 }[l (a/4)]

+ ((a/24 ).(2p*/)](k 2 + p) 2  0 (104)

The load deflection relation for symmetrical deformation is

Igiven explicitly by this expression. Because of the complexity of

the expression, the load deflection curve can be best determined

by first introducing new variables i and p defined as follows:

S=a - 4 P = 48vP - 4 (105)

Equation (104) can then be written as

Ko +KlP + K 2p2 - 4p 3 = 0 (106)

where

= (316 + 3A,(9a- - 116)]

K = a-2[-12 + 32 (6a 2 - 120)) (107)

K2 = g(-20 + 3 - 20)]

The solution to (106) is antisymmetrical in p about the

origin i = p = 0. The energy load is therefore immediately
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obtained as

pa, = 0

or from (105) and (102)

PS- /12

The energy load is therefore unchanged by going from 1 to 2 terms

in the expansion for the deflected shape, The addition of the

second term is found not to alter the relation between the load

and the bending deformation and the symmetry of the membrane

stresses. The infLuence of the second term is therefore similar

to that of a type A imperfection. This result would probably not

be true by the inclusion of more terms in the deflected shape

function, but it is believed that the consideration of additional

terms will not have any significant effect on the energy load,

The upper buckling load for the symmetrical mode is most

easily obtained by plotting p against it and determining the valt.e

of p at the limit point from the resulting plot. This value can

be transformed back to the original coordinates using (105) and

(102). Performing this procedure for a range of the geometric

parameter %X, plot of P against X is obtained. This is shown

in Figure 13 along with the energy load, the one term approxima-

tion for Put and the transitional buckling load PUA
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(f) Experiments on Elastic Snap Buckling of Clamped Arches.

The experimental part of the study was concerned with

obtaining complete load deflection curves for a wide range of

geometries of clamped arches. It was of special interest to obtain

the unstable regions of these curves and to investigate the mode

shapes at various stages of loading. The experimental setup was

constructed so that creep snap buckling tests as well as elastic

tests were possible. In this section only the elastic tests con-

ducted at room temperature are considered. Figure 14 shows a

schematic drawing of the apparatus and Fig. 15 and 16 are photo-

graphs of the actual apparatus.

The arch was clamped between two fixing blocks at each end.

It was necessary to make a series of these blocks of different

angles to cover the range of geometry. The fixing blocks were

bolted to a very stiff auxiliary frame which rested freely upon the

main support frame. This was necessary to allow the auxiliary

frame to expand freely for the high temperature tests. To ensure

complete rigidity of the clamping, the fixing blocks were backed

up against two other blocks which were bolted and doweled to the

auxiliary frame.

The deformations of the arch were measured at several points

with dial gauges, These were arranged outside the furnace with

extension rods resting on the arch. The extension rods were counter-

weighted with springs to minimize the effect of their weight on the

behavior of the arch. Experiments with only the center gauge and

all the gauges confirmed that this was achieved.
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The load was applied at the center through a knife edge

fixture and a loading rod extending out of the furnace. To obtain

the complete load deflection curve, a system of a Jack and a strain

gauge instrumented load cell in series with the applied load was

utilized. The load, which was greater than P rested upon the

Jack and the entire load deflection relation was obtained by lower-

ing the Jack in small increments - in effect a deflection controlled

procedure - and noting the load supported by the arch from the load

cell and the corresponding deflections from the dial gauges.

The specimens were made from 2024T4 aluminum alloy and were

one inch wide, three sixteenths inches thick, and nominally

34 inches between supports. They were rolled into a circular arc

using a three roller sheet metal roll. The geometry was determined

by measuring the central height after the specimens were bolted into

the auxiliary frare; The clamping resulted in a slight pre-stress-

Ing for some of the specimens, particularly at the lower values of

k, as it was very difficult to get the angle of the fixing blocks

to coincide exactly with the base angle of the specimens.

In all, 14 specimens were tested for X ranging from 3.69

to 16.25. Table I gives the geometries and the buckling loads ob-

tained. All the experiments were completely elastic as the speci-

mens were found to return to their original shape to within a few

thousandths of an inch upon unloading. The lower buckling load of

the clamped arch is greater than zero and therefore the arch cannot

remain in the buckled state when the load is removed.

The experimental buckling loads (the maximum points in the

load deflection curves) are compared with the theoretical results
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in Fig. 13. Except for the two points with the lowest values of

X, the agreement with the two term solution is very good. It is

probable that the disagreement in those two cases was due to the

clamping stresses.

Fig. 17 shows complete load - central deflection curves for

three values of X along with corresponding theoretical predictions.

The complete theoretical load deflection curves (for 1 and 2 terms)

are shown for the X = 11.62 case. Although the general trends and

especially the buckling load values are in close agreement, the

curves by themselves are not conclusive as to the buckling mode

in the unstable region. It is noted, however, that for large X,

PU is appreciably greater than PT and the experiments agree, as

expected, with PTO

Although the anti-symmetrical mode governs the buckling

process for X > 10.6, the actual amplitude of the anti-symmetrical

mode is relatively small and could be readily overlooked in a super-

ficial test. The shapes at buckling for various arches are shown

in ?ig. 18. The increased waviness in the shapes for the larger

X values and the corresponding need for more than one term in the

theoretical solution can be readily noted. The asymmetry of the

shapes can be noticed for the large X values but is very small

compared to the overall symmetrical deformation. Fig. 19 shows the

deflected shapes for two values of X at the upper, lower, and

middle buckling points. Even at the middle buckling position, when

the anti-symmetrical amplitude is largest, the asymmetry is small

for the X = 16.25 case and almost non-existent, as expected, for

X = 5.35. These results show that although the buckling of a
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system may be governed by anti-symmetrical modes, these modes may

not be readily detectable except by very careful experimentation.

These observations are believed to be pertinent to the related prob-

lem of the buckling of spherical caps.

(g) General Discussion of Results for the Clamped Arch.

1. The experimental results were in good agreement with the

general theoretical predictions and showed that for large X buckling

Is governed by anti-symmetrical modes - the buckling load corres-

ponded to the transitional buckling values PT The amplitudes of

the anti-symmetrical modes were, however, relatively small. As

expected, the energy load was a lower bound on the experimental

buckling loads, and could have served to give reasonable predictions,

2. Although a change in buckling mode occurs (theoretically)

at X 10.6, the transition is a smooth one and the buckling load-

geometry (%), curve is also smooth. The behavior is therefore un-

like the sharp divisions obtained for plate buckling, and is a

further reason for the difficulty in detecting bucklirg mode changes.

3. The neneral features of the nonlinear behavior of the

clamped arch were found to be similar to those of the simple mech-

anical model and to conform with the general results obtained for

such nonlinear systems.

4. The one term solution gave the proper overall behavior but

was appreciably in error on the actual magnitudes especially for

the higher values of X . The two term solution gave fairly good

results - the additional corrections to the six term solution for

the anti-symmetrical buckling load are relatively small.
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5. The energy load was the same for both the one and two term

solutions. Although the energy load would not be unchanged in the

complete solution, there are strong indications that the energy load

is a relatively insensitive function of the buckled shape.
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Creep Bucklirg of Arches.

The creep buckling problem was studied as an important prob-

lem in its own right and as an example in a difficult field where

the energy load concepts may have application. The possibility that

the energy load, as defined for the initial geometry, may be a lower

bound on the load required for snap buckling in the presence of

creep was the point of particular interest. However, it became

evident early in the work that the energy load based on the initial

geometry was not a lower bound in the above sense. The only signifi-

cance of the energy criterion in creep problems, at least for the

model and the arch,is that the "membrane" forces corresponding to

the original energy load must be exceeded before buckling can occur.

Considerable insight into the snap creep buckling problem

can be obtained from the analysis of the simple model of Fig. 2.

A related study was performed by Hult [18], but his model did not

contain the central spring which would correspond to the bending

rigidity in the case of the arch. The energy load for Hult's model

is therefore identically zero for all geometries and cannot be used

to investigate the significance of the energy load in creep snap

buckling problems. In addition Hult's model is statically deter--

minate whereas the force distribution in the more general model

depends upon the relative stiffnesses and the creep law as well as

upon the geometry.

The problem of creep snap buckling can be formulated as the

determination of the load deflection curve for superimposed loading

at successive stages of creep of the system. When the geometry and

force distribution is such that the load increment required to reach
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either PU or PT (whichever is lower) becomes zero, then snap ,

buckling will occur. The analysis is based upon assuming that the

superimposed load deflection curve can be calculated from elastic

theory. The incremental stresses and strains due to buckling are

taken to be elastic. This assumption agrees with the commonly used

creep laws since the snap buckling process is relatively rapid.

The equilibrium equation for the model of Fig. 2, as given

by (2), can be written with slightly greater generality as

P = F + 2T(a-b)/L (108)

where F is the force in the compressed spring, and .the

other symbols are as defined previously. The strain in the arms

is given by (3). In the following analysis it is convenient to

consider compressive strains as positive. Both the arms and the

spring are considered to creep under the applied forces.

The model is subjected to a constant applied load P * The

forces in the arms and in the spring, and the apex deflection at

any later time are designated T, P0 and b0 respectively, These

quantities are also related through (108). The load deflection

relation for an additional load P can now be obtained.

The total force in the spring due to P. + AP is

F = F 0 + k(b-b0)

where b is the total displacement from the unloaded position. Prom

the strain expression (3), the total force in the arms is

T = TO + (AE/2L2 )(b-b )(2a-6-b )
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The total forces must also satisfy the overall equilibrium equation

(108). Upon substitution of the above expressions for F and T into

(108) and subtracting the equilibrium conditions for the original

loading state, the load deflection relation for the additional load

AP is obtained as

AP = [k-(2T 0/L)](6-b0 ) + (AE/L3 )(a-b)(b6-0 )(2a--b 0 ) (109)

AP is plotted against b in Fig. 20. This is the instanta-

neous load deflection curve for the system at any stage of creep.

The curve again consists of a straight line and a curve anti-

symmetrical about 6 = a, The energy load is therefore

APO = [k-(2T0/L)](a-b 0 ) (110)

For the fully elastic case this result agrees, as expected, with

that obtained by subtracting (2) from the elastic energy load,

% = ka, (9). The energy load for additional loading, APe, is

zero when

T = kL/2 (111)

which, from (9) and (2), is also the value for the force in the

arms (the "membrane" force) at the elastic energy load Pe * The

condition b6 = a is a special case for the vanishing of AP e e

The upper buckling load for the additional load AP is

found by setting d(AP)/db = 0. This yields the following quadratic

equation for the total deflection 6U at buckling
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3 b2- 6abU -b 2a 2 + (L3/AE)[(k-(2T /L)J = 0

The upper buckling load condition will be reached by the system

with no additional load being required (AP = 0) when bU = b., or

when

T = (kL/2) + (AE/L 2 )(b o - a) 2  (112)

This has an absolute minimum at To a kL/2. The minimum

value that the force in the arms could have at the upper buckling

point for any arbitrary loading path is therefore the same as at

the energy load for the fully elastic case.

The transitional buckling condition i reached when the

force in the arms equals the Euler backling load, T = TE . For snap

buckling to occur for additional loading above POP the additional

_oad must be greater than APeS (110). The total force in the arms

must therefore exceed kL/2 if buckling of the arms is to lead to

snap buckling and not to only a bifurcation of equilibrium with a

continuously increasing deflection. Fig. 21 shows the combinations

of the force in the arms and the displacement that will cause in-

stability. The relative values of the different criteria depend

upon the original geometry and the elastic constants, but not on

the creep properties. The relation between Tc and b0 for com-

pletely elastic deformation is given by (4) and is also plotted in

Fig. 21. The system described by Fig. 21 would buckle under elastic

loading when the elastic curve crosses the curve for the limit

point (the upper buckling load) condition, point Q.

For the creep problem the system is first loaded elastically

up to some point A along the elastic response curve OQ. The
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system then creeps under the constant load with consequent changes

in the force in the arms and in the deflection. The relation be-

tween these two quantities during creep (path AB) depends upon the

particular creep law and would result in snap buckling when the

values agree with one of the buckling criteria determined previous-

ly e.g., point B in Fig. 21. Although the law for metallic creep

is nonlinear, the principal features of the problem can be most

easily obtained from the study of linear viscoelastic behavior,

The creep laws for the spring and the arms of the model

can be taken as

go = O/k) + Xc (113)

a = (1/A)[(i /E) + OT0] (114)

where X and IL are material constants.

Upon differentiating (3) (with the sign changed) with

respect to the time, the strain rate in the arms can be obtained

as a function of the displacement,

* = (l/L2)(a-b 0 )

which, upon substitution into (114), gives

;c(a-b0 ) = (L2/A)[(T 0C/E) +LT a] (115)

Differentiation of the equilibrium equation (108) with

respect to the displacement b0 gives
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dF dTc..a (2/L)ET O- (a-bo) ] (116)

since the applied load Pa is constant during the creep process.

Using the relationship
* *dF o

. ; 0 (117)
0 0

in (113), and solving for the displacement rate gives

0 -F .o/[1-(l/k) d?,01 (118)
0

dP'o
Substituting for Fo and ° from (108) and (116) leads to the fol-

lowing expression for the deflection rate:

)?o-(2X/L)(a-6o)To  (119)

1- (2/kL)[To-(a-6o~x
a

Using the relation

dT
0 a

equation (115) can also be solved for the deflection rate to give

(L 2 p/A)Ta (IT-7(120)
S(a-b )-(L2/As) (

00

Buckling will take place when b becomes infinite or when

the denominators of (119) or (120) becomes zero, The buckling

criterion is therefore

dT o0

1-(2/kL)[T - (a-b o ) d 0 (121)

dT
(a-b) " (L2/AE) 0o = (122)

0
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Solving (121) and (122) simultaneously for T. gives the

same instability locus in the Top b0 , plane as was obtained pre-

viously (112) by the additional loading approach. The equation

for the creep locus in the To, bc plane (path AB) can be obtained

by equating the two creep rates in (119) and (120). This gives

dTc (X/)(a-b0 )[Pc"(2Tc/L)(a..b)J+(2TcL/Ak)[To"(kL/2)] (123)

=- (X/i)(L/AE)EPc-(2c/L) (a- o) ]+(2TcL/Ak)(a-bc)

The required locus can be obtaned by integrating (123).

The initial condition is the solution for the initial elastic load-

ing (point A of kVig. 21). When noint B is reached the system will

snap through to some point C and creep again along CD. The time

necessary to reach B, the creep buckling time, can be computed

from (123) and (119) or (120).

The slope of the creep locus can be seen to be positive

over most of the TO, b e plane. The term

P0 -(2T c/L)(a-bc )

in (123) is equal to Fo from the equilibrium equation (108) and

is therefore always positive. The quantity (a-bc) Is also positive

for bc < a. The denominator of (123) is therefore always positive

In the region 0 _< b < a for all Tc . The first term in the

numerator of (123) is also positive in this region. The second

term is positive for T > kL/2 for all b., and negative for

Tc < kL/2. The slope of the creep locus in the Tc, b plane will

therefore be zero or negative for Tc < kL/2 when



5.9

(X/V)(a-b 0 )1Po-(2TO/L)(a-b0 )]+(T.c/Ak)(T,-(kL/2)1 . 0 (124)

or in the region below EY in Fig. 21. The lowest initial point

that will lead to buckling will be some point G for which the

creep locus will be G' which passes through F with a horizontal

slope. Initial loading to any point above G will lead to buckling.

Since To for point G would, in general, be lees than the force in

the arms at the energy load, loads below the energy load could

result in snap buckling of the system.

T. H. H. Plan and C. Y. Chow [19] studied the creep buck-

ling of a simply supported low arch. To simplify the analysis

they assumed that the stress distribution across the arch is linear,

and that the stresses and displacements varied along the arch in

the same manner as in the elastic solution. The second of these

conditions to sUivalent to assuming that the deformed shape is the

same in the elastic and creep preoesses.They solved the problem

using one symmetrical and one asymmetrical term in the deflection

function* For symmetrical creep deformations they found the arch

to behave in exactly the same manner as the model. They used a

creep law of the form

e d/E) + j

with n = 1 and 3.

As no experimental results were obtainable in the litera-

tureit was felt that some experiments would be very desirable in

view of the many simpllfying assumntions in.de in the analyses. A

series of tests were therefore performed on clamped arches in the

testing setup described previously. The material used was 5052-0
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perature its mechanical properties are fairly constant with time.

The specimen was mounted in the oven at room temperature. One

end was left loose and free to expand so that no thermal stresses

would be induced upon heating. After the oven and the specimen

had reached the test temperature, 500 F, and held there for

2-3 hours to ensure uniform temperature, the specimen was clamped.

This was made possible by putting extensions on the clamping bolts

reaching out of the oven. The dial gauges were then lowered and

the dead load applied at the arch center, In order to read all

the gauges and the time simultaneously, the gauges and a clock were

all photographed at regular intervals. This method proved success-

ful and the deflected shape right up to the time of buckling was

obtained for all the tests. In

Table II the loads and the geometry of the arches are shown with

the time required for buckling to occur. The geometries fall in

one group around X = 9 and one around X= 16. All the tests were

performed at loadc below the energy load based on the original

peometry.

It is interesting to note tests number I and 4 where the

geometry and the load is the same but the buckling times differ

by a factor of ten. One of the reasons for this can be seen in

Fig. 22, where the deflection just prior to buckling for the two

tests are plotted. Specimen number 4, the one with the longest

buckling time, is almost symmetrical whereas number 1 has a large

unsymmetrical component.
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Fig. 23 shows the deflections for specimen number 7 at three

different times. In both Figs. 22 and 23 the importance of includ-

ing a second symmetrical term in the displacement function is

brought out. This is the same as was found for the completely

elastic case. The inclusion of such terms would,howevermake the

creep analyses quite complex. A simplification may be obtained by

replacing the arch with a structure of the kind shown in Fig. 24

with six elastic-creep hinges. The deflected shape of such a

system would closely resemble the real shapes shown in Figs. 22

and 23 for symmetrical deformations. Fig. 25 shows a buckled arch

which shows clearly the sharp hinges formed at the center and at

the ends. The possibility of an analyses on these lines will be

investigated in a later paper.
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Table I

Dimensions and Experimental
Buckling Loads of Clamped Arches

Height(inches) I - (P2R/t) .P (lb.)

o.346 3.69 no buokling
0.346 3.69 9.05
0.502 5.35 12.15
0.552 5.89 13.70
0.705 7,52 18.10
0.751 8.01 20.85
0.885 9.44 21.30
0.890 9.50 23.90
1.080 11.51 28.45
1.090 11.62 29.65
1.236 13.15 36.20
1.288 13.75 33.30
1.430 15.25 42.00
1.522 16,25 39.50

Horizontal distance between ends = 34 inches

Width = 1 inch; Thickness = 3/16 inch

Material: 2024-T4 Aluminum alloy
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FIG. I TYPICAL LOAD DEFLECTION CURVE FOR SYSTEM
THAT EXHIBITS SNAP BUCKLING.
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FIG. 2 MODEL TO EXIBIT SNAP BUCKLING.
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FIG. 3 LOAD DEFLECTION CURVE FOR MODEL.
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FIG. 4 GRAPHICAL DETERMINATION OF ENERGY LOAD FOR THE MODEL.
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FIG. 5 LOAD DEFLECTION CURVES FOR MODEL WITH INITIAL IMPERFECTIONS.
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FIG.6 LOAD DEFLECTION CURVE FOR THE MODEL
SHOWING NON-SYMMETRICAL BUCKLING PATH.
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FIG.9 MEMBRANE STRAIN ENERGY VARIATION FOR SYSTEMS
SHOWING MEMBRANE STRESS SYMMETRY.
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FIG. 10 CLAMPED CIRCULAR ARCH UNDER CENTRAL CONCENTRATED LOAD.
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FIG. 14 ELASTIC AND CREEP BUCKLING APPARATUS.



FIG. 15 APPARATUS FOR ELAS'TIC AND CREEP

BUCKLING TESTS OF ARCHES.
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